Testing Interview Questions and Answers

 

Manual Testing Interview Questions and Answers

What makes a good test engineer?

A good test engineer has a 'test to break' attitude, an ability to take the point of view of the customer, a strong desire for quality, and an attention to detail. Tact and diplomacy are useful in maintaining a cooperative relationship with developers, and an ability to communicate with both technical (developers) and non-technical (customers, management) people is useful. Previous software development experience can be helpful as it provides a deeper understanding of the software development process, gives the tester an appreciation for the developers' point of view, and reduce the learning curve in automated test tool programming. Judgment skills are needed to assess high-risk areas of an application on which to focus testing efforts when time is limited.

What makes a good Software QA engineer?

The same qualities a good tester has are useful for a QA engineer. Additionally, they must be able to understand the entire software development process and how it can fit into the business approach and goals of the organization. Communication skills and the ability to understand various sides of issues are important. In organizations in the early stages of implementing QA processes, patience and diplomacy are especially needed. An ability to find problems as well as to see 'what's missing' is important for inspections and reviews.

What makes a good QA or Test manager?

A good QA, test, or QA/Test(combined) manager should:
• be familiar with the software development process
• be able to maintain enthusiasm of their team and promote a positive atmosphere, despite
• what is a somewhat 'negative' process (e.g., looking for or preventing problems)
• be able to promote teamwork to increase productivity
• be able to promote cooperation between software, test, and QA engineers
• have the diplomatic skills needed to promote improvements in QA processes
• have the ability to withstand pressures and say 'no' to other managers when quality is insufficient or QA processes are not being adhered to
• have people judgement skills for hiring and keeping skilled personnel
• be able to communicate with technical and non-technical people, engineers, managers, and customers.
• be able to run meetings and keep them focused

What's the role of documentation in QA?

Critical. (Note that documentation can be electronic, not necessarily paper.) QA practices should be documented such that they are repeatable. Specifications, designs, business rules, inspection reports, configurations, code changes, test plans, test cases, bug reports, user manuals, etc. should all be documented. There should ideally be a system for easily finding and obtaining documents and determining what documentation will have a particular piece of information. Change management for documentation should be used if possible.

What's the big deal about 'requirements'?

One of the most reliable methods of insuring problems, or failure, in a complex software project is to have poorly documented requirements specifications. Requirements are the details describing an application's externally-perceived functionality and properties. Requirements should be clear, complete, reasonably detailed, cohesive, attainable, and testable. A non-testable requirement would be, for example, 'user-friendly' (too subjective). A testable requirement would be something like 'the user must enter their previously-assigned password to access the application'. Determining and organizing requirements details in a useful and efficient way can be a difficult effort; different methods are available depending on the particular project. Many books are available that describe various approaches to this task. (See the Bookstore section's 'Software Requirements Engineering' category for books on Software Requirements.)
Care should be taken to involve ALL of a project's significant 'customers' in the requirements process. 'Customers' could be in-house personnel or out, and could include end-users, customer acceptance testers, customer contract officers, customer management, future software maintenance engineers, salespeople, etc. Anyone who could later derail the project if their expectations aren't met should be included if possible.
Organizations vary considerably in their handling of requirements specifications. Ideally, the requirements are spelled out in a document with statements such as 'The product shall.....'. 'Design' specifications should not be confused with 'requirements'; design specifications should be traceable back to the requirements.
In some organizations requirements may end up in high level project plans, functional specification documents, in design documents, or in other documents at various levels of detail. No matter what they are called, some type of documentation with detailed requirements will be needed by testers in order to properly plan and execute tests. Without such documentation, there will be no clear-cut way to determine if a software application is performing correctly.
'Agile' methods such as XP use methods requiring close interaction and cooperation between programmers and customers/end-users to iteratively develop requirements. The programmer uses 'Test first' development to first create automated unit testing code, which essentially embodies the requirements.

What steps are needed to develop and run software tests?

The following are some of the steps to consider:
• Obtain requirements, functional design, and internal design specifications and other necessary documents
• Obtain budget and schedule requirements
• Determine project-related personnel and their responsibilities, reporting requirements, required standards and processes (such as release processes, change processes, etc.)
• Identify application's higher-risk aspects, set priorities, and determine scope and limitations of tests
• Determine test approaches and methods - unit, integration, functional, system, load, usability tests, etc.
• Determine test environment requirements (hardware, software, communications, etc.)
• Determine testware requirements (record/playback tools, coverage analyzers, test tracking, problem/bug tracking, etc.)
• Determine test input data requirements
• Identify tasks, those responsible for tasks, and labor requirements
• Set schedule estimates, timelines, milestones
• Determine input equivalence classes, boundary value analyses, error classes
• Prepare test plan document and have needed reviews/approvals
• Write test cases
• Have needed reviews/inspections/approvals of test cases
• Prepare test environment and testware, obtain needed user manuals/reference documents/configuration guides/installation guides, set up test tracking processes, set up logging and archiving processes, set up or obtain test input data
• Obtain and install software releases
• Perform tests
• Evaluate and report results
• Track problems/bugs and fixes
• Retest as needed
• Maintain and update test plans, test cases, test environment, and testware through life cycle


What's a 'test plan'?

A software project test plan is a document that describes the objectives, scope, approach, and focus of a software testing effort. The process of preparing a test plan is a useful way to think through the efforts needed to validate the acceptability of a software product. The completed document will help people outside the test group understand the 'why' and 'how' of product validation. It should be thorough enough to be useful but not so thorough that no one outside the test group will read it. The following are some of the items that might be included in a test plan, depending on the particular project:
• Title
• Identification of software including version/release numbers
• Revision history of document including authors, dates, approvals
• Table of Contents
• Purpose of document, intended audience
• Objective of testing effort
• Software product overview
• Relevant related document list, such as requirements, design documents, other test plans, etc.
• Relevant standards or legal requirements
• Traceability requirements
• Relevant naming conventions and identifier conventions
• Overall software project organization and personnel/contact-info/responsibilties
• Test organization and personnel/contact-info/responsibilities
• Assumptions and dependencies
• Project risk analysis
• Testing priorities and focus
• Scope and limitations of testing
• Test outline - a decomposition of the test approach by test type, feature, functionality, process, system, module, etc. as applicable
• Outline of data input equivalence classes, boundary value analysis, error classes
• Test environment - hardware, operating systems, other required software, data configurations, interfaces to other systems
• Test environment validity analysis - differences between the test and production systems and their impact on test validity.
• Test environment setup and configuration issues
• Software migration processes
• Software CM processes
• Test data setup requirements
• Database setup requirements
• Outline of system-logging/error-logging/other capabilities, and tools such as screen capture software, that will be used to help describe and report bugs
• Discussion of any specialized software or hardware tools that will be used by testers to help track the cause or source of bugs
• Test automation - justification and overview
• Test tools to be used, including versions, patches, etc.
• Test script/test code maintenance processes and version control
• Problem tracking and resolution - tools and processes
• Project test metrics to be used
• Reporting requirements and testing deliverables
• Software entrance and exit criteria
• Initial sanity testing period and criteria
• Test suspension and restart criteria
• Personnel allocation
• Personnel pre-training needs
• Test site/location
• Outside test organizations to be utilized and their purpose, responsibilties, deliverables, contact persons, and coordination issues
• Relevant proprietary, classified, security, and licensing issues.
• Open issues
• Appendix - glossary, acronyms, etc.

What's a 'test case'?

• A test case is a document that describes an input, action, or event and an expected response, to determine if a feature of an application is working correctly. A test case should contain particulars such as test case identifier, test case name, objective, test conditions/setup, input data requirements, steps, and expected results.
• Note that the process of developing test cases can help find problems in the requirements or design of an application, since it requires completely thinking through the operation of the application. For this reason, it's useful to prepare test cases early in the development cycle if possible.

What should be done after a bug is found?

The bug needs to be communicated and assigned to developers that can fix it. After the problem is resolved, fixes should be re-tested, and determinations made regarding requirements for regression testing to check that fixes didn't create problems elsewhere. If a problem-tracking system is in place, it should encapsulate these processes. A variety of commercial problem-tracking/management software tools are available (see the 'Tools' section for web resources with listings of such tools). The following are items to consider in the tracking process:
• Complete information such that developers can understand the bug, get an idea of it's severity, and reproduce it if necessary.
• Bug identifier (number, ID, etc.)
• Current bug status (e.g., 'Released for Retest', 'New', etc.)
• The application name or identifier and version
• The function, module, feature, object, screen, etc. where the bug occurred
• Environment specifics, system, platform, relevant hardware specifics
• Test case name/number/identifier
• One-line bug description
• Full bug description
• Description of steps needed to reproduce the bug if not covered by a test case or if the developer doesn't have easy access to the test case/test script/test tool
• Names and/or descriptions of file/data/messages/etc. used in test
• File excerpts/error messages/log file excerpts/screen shots/test tool logs that would be helpful in finding the cause of the problem
• Severity estimate (a 5-level range such as 1-5 or 'critical'-to-'low' is common)
• Was the bug reproducible?
• Tester name
• Test date
• Bug reporting date
• Name of developer/group/organization the problem is assigned to
• Description of problem cause
• Description of fix
• Code section/file/module/class/method that was fixed
• Date of fix
• Application version that contains the fix
• Tester responsible for retest
• Retest date
• Retest results
• Regression testing requirements
• Tester responsible for regression tests
• Regression testing results
A reporting or tracking process should enable notification of appropriate personnel at various stages. For instance, testers need to know when retesting is needed, developers need to know when bugs are found and how to get the needed information, and reporting/summary capabilities are needed for managers.

What is 'configuration management'?

Configuration management covers the processes used to control, coordinate, and track: code, requirements, documentation, problems, change requests, designs, tools/compilers/libraries/patches, changes made to them, and who makes the changes. (See the 'Tools' section for web resources with listings of configuration management tools. Also see the Bookstore section's 'Configuration Management' category for useful books with more information.)

What if the software is so buggy it can't really be tested at all?

The best bet in this situation is for the testers to go through the process of reporting whatever bugs or blocking-type problems initially show up, with the focus being on critical bugs. Since this type of problem can severely affect schedules, and indicates deeper problems in the software development process (such as insufficient unit testing or insufficient integration testing, poor design, improper build or release procedures, etc.) managers should be notified, and provided with some documentation as evidence of the problem.

How can it be known when to stop testing?

This can be difficult to determine. Many modern software applications are so complex, and run in such an interdependent environment, that complete testing can never be done. Common factors in deciding when to stop are:
• Deadlines (release deadlines, testing deadlines, etc.)
• Test cases completed with certain percentage passed
• Test budget depleted
• Coverage of code/functionality/requirements reaches a specified point
• Bug rate falls below a certain level
• Beta or alpha testing period ends
What if there isn't enough time for thorough testing?
Use risk analysis to determine where testing should be focused.
Since it's rarely possible to test every possible aspect of an application, every possible combination of events, every dependency, or everything that could go wrong, risk analysis is appropriate to most software development projects. This requires judgement skills, common sense, and experience. (If warranted, formal methods are also available.) Considerations can include:
• Which functionality is most important to the project's intended purpose?
• Which functionality is most visible to the user?
• Which functionality has the largest safety impact?
• Which functionality has the largest financial impact on users?
• Which aspects of the application are most important to the customer?
• Which aspects of the application can be tested early in the development cycle?
• Which parts of the code are most complex, and thus most subject to errors?
• Which parts of the application were developed in rush or panic mode?
• Which aspects of similar/related previous projects caused problems?
• Which aspects of similar/related previous projects had large maintenance expenses?
• Which parts of the requirements and design are unclear or poorly thought out?
• What do the developers think are the highest-risk aspects of the application?
• What kinds of problems would cause the worst publicity?
• What kinds of problems would cause the most customer service complaints?
• What kinds of tests could easily cover multiple functionalities?
• Which tests will have the best high-risk-coverage to time-required ratio?

What if the project isn't big enough to justify extensive testing?

Consider the impact of project errors, not the size of the project. However, if extensive testing is still not justified, risk analysis is again needed and the same considerations as described previously in 'What if there isn't enough time for thorough testing?' apply. The tester might then do ad hoc testing, or write up a limited test plan based on the risk analysis.

What can be done if requirements are changing continuously?

A common problem and a major headache.
• Work with the project's stakeholders early on to understand how requirements might change so that alternate test plans and strategies can be worked out in advance, if possible.
• It's helpful if the application's initial design allows for some adaptability so that later changes do not require redoing the application from scratch.
• If the code is well-commented and well-documented this makes changes easier for the developers.
• Use rapid prototyping whenever possible to help customers feel sure of their requirements and minimize changes.
• The project's initial schedule should allow for some extra time commensurate with the possibility of changes.
• Try to move new requirements to a 'Phase 2' version of an application, while using the original requirements for the 'Phase 1' version.
• Negotiate to allow only easily-implemented new requirements into the project, while moving more difficult new requirements into future versions of the application.
• Be sure that customers and management understand the scheduling impacts, inherent risks, and costs of significant requirements changes. Then let management or the customers (not the developers or testers) decide if the changes are warranted - after all, that's their job.
• Balance the effort put into setting up automated testing with the expected effort required to re-do them to deal with changes.
• Try to design some flexibility into automated test scripts.
• Focus initial automated testing on application aspects that are most likely to remain unchanged.
• Devote appropriate effort to risk analysis of changes to minimize regression testing needs.
• Design some flexibility into test cases (this is not easily done; the best bet might be to minimize the detail in the test cases, or set up only higher-level generic-type test plans)
• Focus less on detailed test plans and test cases and more on ad hoc testing (with an understanding of the added risk that this entails).

What if the application has functionality that wasn't in the requirements?

It may take serious effort to determine if an application has significant unexpected or hidden functionality, and it would indicate deeper problems in the software development process. If the functionality isn't necessary to the purpose of the application, it should be removed, as it may have unknown impacts or dependencies that were not taken into account by the designer or the customer. If not removed, design information will be needed to determine added testing needs or regression testing needs. Management should be made aware of any significant added risks as a result of the unexpected functionality. If the functionality only effects areas such as minor improvements in the user interface, for example, it may not be a significant risk.

How can Software QA processes be implemented without stifling productivity?

By implementing QA processes slowly over time, using consensus to reach agreement on processes, and adjusting and experimenting as an organization grows and matures, productivity will be improved instead of stifled. Problem prevention will lessen the need for problem detection, panics and burn-out will decrease, and there will be improved focus and less wasted effort. At the same time, attempts should be made to keep processes simple and efficient, minimize paperwork, promote computer-based processes and automated tracking and reporting, minimize time required in meetings, and promote training as part of the QA process. However, no one - especially talented technical types - likes rules or bureacracy, and in the short run things may slow down a bit. A typical scenario would be that more days of planning and development will be needed, but less time will be required for late-night bug-fixing and calming of irate customers.

What if an organization is growing so fast that fixed QA processes are impossible?

This is a common problem in the software industry, especially in new technology areas. There is no easy solution in this situation, other than:
• Hire good people
• Management should 'ruthlessly prioritize' quality issues and maintain focus on the customer
• Everyone in the organization should be clear on what 'quality' means to the customer

How does a client/server environment affect testing?

Client/server applications can be quite complex due to the multiple dependencies among clients, data communications, hardware, and servers. Thus testing requirements can be extensive. When time is limited (as it usually is) the focus should be on integration and system testing. Additionally, load/stress/performance testing may be useful in determining client/server application limitations and capabilities. There are commercial tools to assist with such testing. (See the 'Tools' section for web resources with listings that include these kinds of test tools.)

How can World Wide Web sites be tested?

Web sites are essentially client/server applications - with web servers and 'browser' clients. Consideration should be given to the interactions between html pages, TCP/IP communications, Internet connections, firewalls, applications that run in web pages (such as applets, javascript, plug-in applications), and applications that run on the server side (such as cgi scripts, database interfaces, logging applications, dynamic page generators, asp, etc.). Additionally, there are a wide variety of servers and browsers, various versions of each, small but sometimes significant differences between them, variations in connection speeds, rapidly changing technologies, and multiple standards and protocols. The end result is that testing for web sites can become a major ongoing effort. Other considerations might include:
• What are the expected loads on the server (e.g., number of hits per unit time?), and what kind of performance is required under such loads (such as web server response time, database query response times). What kinds of tools will be needed for performance testing (such as web load testing tools, other tools already in house that can be adapted, web robot downloading tools, etc.)?
• Who is the target audience? What kind of browsers will they be using? What kind of connection speeds will they by using? Are they intra- organization (thus with likely high connection speeds and similar browsers) or Internet-wide (thus with a wide variety of connection speeds and browser types)?
• What kind of performance is expected on the client side (e.g., how fast should pages appear, how fast should animations, applets, etc. load and run)?
• Will down time for server and content maintenance/upgrades be allowed? how much?
• What kinds of security (firewalls, encryptions, passwords, etc.) will be required and what is it expected to do? How can it be tested?
• How reliable are the site's Internet connections required to be? And how does that affect backup system or redundant connection requirements and testing?
• What processes will be required to manage updates to the web site's content, and what are the requirements for maintaining, tracking, and controlling page content, graphics, links, etc.?
• Which HTML specification will be adhered to? How strictly? What variations will be allowed for targeted browsers?
• Will there be any standards or requirements for page appearance and/or graphics throughout a site or parts of a site??
• How will internal and external links be validated and updated? how often?
• Can testing be done on the production system, or will a separate test system be required? How are browser caching, variations in browser option settings, dial-up connection variabilities, and real-world internet 'traffic congestion' problems to be accounted for in testing?
• How extensive or customized are the server logging and reporting requirements; are they considered an integral part of the system and do they require testing?
• How are cgi programs, applets, javascripts, ActiveX components, etc. to be maintained, tracked, controlled, and tested?
Some sources of site security information include the Usenet newsgroup 'comp.security.announce' and links concerning web site security in the 'Other Resources' section.
Some usability guidelines to consider - these are subjective and may or may not apply to a given situation (Note: more information on usability testing issues can be found in articles about web site usability in the 'Other Resources' section):
• Pages should be 3-5 screens max unless content is tightly focused on a single topic. If larger, provide internal links within the page.
• The page layouts and design elements should be consistent throughout a site, so that it's clear to the user that they're still within a site.
• Pages should be as browser-independent as possible, or pages should be provided or generated based on the browser-type.
• All pages should have links external to the page; there should be no dead-end pages.
• The page owner, revision date, and a link to a contact person or organization should be included on each page.
Many new web site test tools have appeared in the recent years and more than 280 of them are listed in the 'Web Test Tools' section.

How is testing affected by object-oriented designs?

Well-engineered object-oriented design can make it easier to trace from code to internal design to functional design to requirements. While there will be little affect on black box testing (where an understanding of the internal design of the application is unnecessary), white-box testing can be oriented to the application's objects. If the application was well-designed this can simplify test design.

What is Extreme Programming and what's it got to do with testing?

Extreme Programming (XP) is a software development approach for small teams on risk-prone projects with unstable requirements. It was created by Kent Beck who described the approach in his book 'Extreme Programming Explained' (See the Softwareqatest.com Books page.). Testing ('extreme testing') is a core aspect of Extreme Programming. Programmers are expected to write unit and functional test code first - before the application is developed. Test code is under source control along with the rest of the code. Customers are expected to be an integral part of the project team and to help develope scenarios for acceptance/black box testing. Acceptance tests are preferably automated, and are modified and rerun for each of the frequent development iterations. QA and test personnel are also required to be an integral part of the project team. Detailed requirements documentation is not used, and frequent re-scheduling, re-estimating, and re-prioritizing is expected. For more info see the XP-related listings in the Softwareqatest.com 'Other Resources' section.

What is 'Software Quality Assurance'?

Software QA involves the entire software development PROCESS - monitoring and improving the process, making sure that any agreed-upon standards and procedures are followed, and ensuring that problems are found and dealt with. It is oriented to 'prevention'. (See the Bookstore section's 'Software QA' category for a list of useful books on Software Quality Assurance.)

What is 'Software Testing'?

Testing involves operation of a system or application under controlled conditions and evaluating the results (eg, 'if the user is in interface A of the application while using hardware B, and does C, then D should happen'). The controlled conditions should include both normal and abnormal conditions. Testing should intentionally attempt to make things go wrong to determine if things happen when they shouldn't or things don't happen when they should. It is oriented to 'detection'. (See the Bookstore section's 'Software Testing' category for a list of useful books on Software Testing.)
• Organizations vary considerably in how they assign responsibility for QA and testing. Sometimes they're the combined responsibility of one group or individual. Also common are project teams that include a mix of testers and developers who work closely together, with overall QA processes monitored by project managers. It will depend on what best fits an organization's size and business structure.

What are some recent major computer system failures caused by software bugs?

• A major U.S. retailer was reportedly hit with a large government fine in October of 2003 due to web site errors that enabled customers to view one anothers' online orders.
• News stories in the fall of 2003 stated that a manufacturing company recalled all their transportation products in order to fix a software problem causing instability in certain circumstances. The company found and reported the bug itself and initiated the recall procedure in which a software upgrade fixed the problems.
• In August of 2003 a U.S. court ruled that a lawsuit against a large online brokerage company could proceed; the lawsuit reportedly involved claims that the company was not fixing system problems that sometimes resulted in failed stock trades, based on the experiences of 4 plaintiffs during an 8-month period. A previous lower court's ruling that "...six miscues out of more than 400 trades does not indicate negligence." was invalidated.
• In April of 2003 it was announced that the largest student loan company in the U.S. made a software error in calculating the monthly payments on 800,000 loans. Although borrowers were to be notified of an increase in their required payments, the company will still reportedly lose $8 million in interest. The error was uncovered when borrowers began reporting inconsistencies in their bills.
• News reports in February of 2003 revealed that the U.S. Treasury Department mailed 50,000 Social Security checks without any beneficiary names. A spokesperson indicated that the missing names were due to an error in a software change. Replacement checks were subsequently mailed out with the problem corrected, and recipients were then able to cash their Social Security checks.
• In March of 2002 it was reported that software bugs in Britain's national tax system resulted in more than 100,000 erroneous tax overcharges. The problem was partly attibuted to the difficulty of testing the integration of multiple systems.
• A newspaper columnist reported in July 2001 that a serious flaw was found in off-the-shelf software that had long been used in systems for tracking certain U.S. nuclear materials. The same software had been recently donated to another country to be used in tracking their own nuclear materials, and it was not until scientists in that country discovered the problem, and shared the information, that U.S. officials became aware of the problems.
• According to newspaper stories in mid-2001, a major systems development contractor was fired and sued over problems with a large retirement plan management system. According to the reports, the client claimed that system deliveries were late, the software had excessive defects, and it caused other systems to crash.
• In January of 2001 newspapers reported that a major European railroad was hit by the aftereffects of the Y2K bug. The company found that many of their newer trains would not run due to their inability to recognize the date '31/12/2000'; the trains were started by altering the control system's date settings.
• News reports in September of 2000 told of a software vendor settling a lawsuit with a large mortgage lender; the vendor had reportedly delivered an online mortgage processing system that did not meet specifications, was delivered late, and didn't work.
• In early 2000, major problems were reported with a new computer system in a large suburban U.S. public school district with 100,000+ students; problems included 10,000 erroneous report cards and students left stranded by failed class registration systems; the district's CIO was fired. The school district decided to reinstate it's original 25-year old system for at least a year until the bugs were worked out of the new system by the software vendors.
• In October of 1999 the $125 million NASA Mars Climate Orbiter spacecraft was believed to be lost in space due to a simple data conversion error. It was determined that spacecraft software used certain data in English units that should have been in metric units. Among other tasks, the orbiter was to serve as a communications relay for the Mars Polar Lander mission, which failed for unknown reasons in December 1999. Several investigating panels were convened to determine the process failures that allowed the error to go undetected.
• Bugs in software supporting a large commercial high-speed data network affected 70,000 business customers over a period of 8 days in August of 1999. Among those affected was the electronic trading system of the largest U.S. futures exchange, which was shut down for most of a week as a result of the outages.
• In April of 1999 a software bug caused the failure of a $1.2 billion U.S. military satellite launch, the costliest unmanned accident in the history of Cape Canaveral launches. The failure was the latest in a string of launch failures, triggering a complete military and industry review of U.S. space launch programs, including software integration and testing processes. Congressional oversight hearings were requested.
• A small town in Illinois in the U.S. received an unusually large monthly electric bill of $7 million in March of 1999. This was about 700 times larger than its normal bill. It turned out to be due to bugs in new software that had been purchased by the local power company to deal with Y2K software issues.
• In early 1999 a major computer game company recalled all copies of a popular new product due to software problems. The company made a public apology for releasing a product before it was ready.

Why is it often hard for management to get serious about quality assurance?

Solving problems is a high-visibility process; preventing problems is low-visibility. This is illustrated by an old parable:
In ancient China there was a family of healers, one of whom was known throughout the land and employed as a physician to a great lord. The physician was asked which of his family was the most skillful healer. He replied,
"I tend to the sick and dying with drastic and dramatic treatments, and on occasion someone is cured and my name gets out among the lords."
"My elder brother cures sickness when it just begins to take root, and his skills are known among the local peasants and neighbors."
"My eldest brother is able to sense the spirit of sickness and eradicate it before it takes form. His name is unknown outside our home."

Why does software have bugs?

• miscommunication or no communication - as to specifics of what an application should or shouldn't do (the application's requirements).
• software complexity - the complexity of current software applications can be difficult to comprehend for anyone without experience in modern-day software development. Windows-type interfaces, client-server and distributed applications, data communications, enormous relational databases, and sheer size of applications have all contributed to the exponential growth in software/system complexity. And the use of object-oriented techniques can complicate instead of simplify a project unless it is well-engineered.
• programming errors - programmers, like anyone else, can make mistakes.
• changing requirements (whether documented or undocumented) - the customer may not understand the effects of changes, or may understand and request them anyway - redesign, rescheduling of engineers, effects on other projects, work already completed that may have to be redone or thrown out, hardware requirements that may be affected, etc. If there are many minor changes or any major changes, known and unknown dependencies among parts of the project are likely to interact and cause problems, and the complexity of coordinating changes may result in errors. Enthusiasm of engineering staff may be affected. In some fast-changing business environments, continuously modified requirements may be a fact of life. In this case, management must understand the resulting risks, and QA and test engineers must adapt and plan for continuous extensive testing to keep the inevitable bugs from running out of control - see 'What can be done if requirements are changing continuously?' in Part 2 of the FAQ.
• time pressures - scheduling of software projects is difficult at best, often requiring a lot of guesswork. When deadlines loom and the crunch comes, mistakes will be made.
• egos - people prefer to say things like:
'no problem'
'piece of cake'
'I can whip that out in a few hours'
'it should be easy to update that old code'
instead of:
'that adds a lot of complexity and we could end up
making a lot of mistakes'
'we have no idea if we can do that; we'll wing it'
'I can't estimate how long it will take, until I
take a close look at it'
'we can't figure out what that old spaghetti code
did in the first place'

If there are too many unrealistic 'no problem's', the result is bugs.

• poorly documented code - it's tough to maintain and modify code that is badly written or poorly documented; the result is bugs. In many organizations management provides no incentive for programmers to document their code or write clear, understandable, maintainable code. In fact, it's usually the opposite: they get points mostly for quickly turning out code, and there's job security if nobody else can understand it ('if it was hard to write, it should be hard to read').
• software development tools - visual tools, class libraries, compilers, scripting tools, etc. often introduce their own bugs or are poorly documented, resulting in added bugs.

How can new Software QA processes be introduced in an existing organization?

• A lot depends on the size of the organization and the risks involved. For large organizations with high-risk (in terms of lives or property) projects, serious management buy-in is required and a formalized QA process is necessary.
• Where the risk is lower, management and organizational buy-in and QA implementation may be a slower, step-at-a-time process. QA processes should be balanced with productivity so as to keep bureaucracy from getting out of hand.
• For small groups or projects, a more ad-hoc process may be appropriate, depending on the type of customers and projects. A lot will depend on team leads or managers, feedback to developers, and ensuring adequate communications among customers, managers, developers, and testers.
• The most value for effort will be in (a) requirements management processes, with a goal of clear, complete, testable requirement specifications embodied in requirements or design documentation and (b) design inspections and code inspections.

What is verification? validation?

Verification typically involves reviews and meetings to evaluate documents, plans, code, requirements, and specifications. This can be done with checklists, issues lists, walkthroughs, and inspection meetings. Validation typically involves actual testing and takes place after verifications are completed. The term 'IV & V' refers to Independent Verification and Validation.

What is a 'walkthrough'?

A 'walkthrough' is an informal meeting for evaluation or informational purposes. Little or no preparation is usually required.

What's an 'inspection'?

An inspection is more formalized than a 'walkthrough', typically with 3-8 people including a moderator, reader, and a recorder to take notes. The subject of the inspection is typically a document such as a requirements spec or a test plan, and the purpose is to find problems and see what's missing, not to fix anything. Attendees should prepare for this type of meeting by reading thru the document; most problems will be found during this preparation. The result of the inspection meeting should be a written report. Thorough preparation for inspections is difficult, painstaking work, but is one of the most cost effective methods of ensuring quality. Employees who are most skilled at inspections are like the 'eldest brother' in the parable in 'Why is it often hard for management to get serious about quality assurance?'. Their skill may have low visibility but they are extremely valuable to any software development organization, since bug prevention is far more cost-effective than bug detection.

What kinds of testing should be considered?

• Black box testing - not based on any knowledge of internal design or code. Tests are based on requirements and functionality.
• White box testing - based on knowledge of the internal logic of an application's code. Tests are based on coverage of code statements, branches, paths, conditions.
• unit testing - the most 'micro' scale of testing; to test particular functions or code modules. Typically done by the programmer and not by testers, as it requires detailed knowledge of the internal program design and code. Not always easily done unless the application has a well-designed architecture with tight code; may require developing test driver modules or test harnesses.
• incremental integration testing - continuous testing of an application as new functionality is added; requires that various aspects of an application's functionality be independent enough to work separately before all parts of the program are completed, or that test drivers be developed as needed; done by programmers or by testers.
• integration testing - testing of combined parts of an application to determine if they function together correctly. The 'parts' can be code modules, individual applications, client and server applications on a network, etc. This type of testing is especially relevant to client/server and distributed systems.
• functional testing - black-box type testing geared to functional requirements of an application; this type of testing should be done by testers. This doesn't mean that the programmers shouldn't check that their code works before releasing it (which of course applies to any stage of testing.)
• system testing - black-box type testing that is based on overall requirements specifications; covers all combined parts of a system.
• end-to-end testing - similar to system testing; the 'macro' end of the test scale; involves testing of a complete application environment in a situation that mimics real-world use, such as interacting with a database, using network communications, or interacting with other hardware, applications, or systems if appropriate.
• sanity testing or smoke testing - typically an initial testing effort to determine if a new software version is performing well enough to accept it for a major testing effort. For example, if the new software is crashing systems every 5 minutes, bogging down systems to a crawl, or corrupting databases, the software may not be in a 'sane' enough condition to warrant further testing in its current state.
• regression testing - re-testing after fixes or modifications of the software or its environment. It can be difficult to determine how much re-testing is needed, especially near the end of the development cycle. Automated testing tools can be especially useful for this type of testing.
• acceptance testing - final testing based on specifications of the end-user or customer, or based on use by end-users/customers over some limited period of time.
• load testing - testing an application under heavy loads, such as testing of a web site under a range of loads to determine at what point the system's response time degrades or fails.
• stress testing - term often used interchangeably with 'load' and 'performance' testing. Also used to describe such tests as system functional testing while under unusually heavy loads, heavy repetition of certain actions or inputs, input of large numerical values, large complex queries to a database system, etc.
• performance testing - term often used interchangeably with 'stress' and 'load' testing. Ideally 'performance' testing (and any other 'type' of testing) is defined in requirements documentation or QA or Test Plans.
• usability testing - testing for 'user-friendliness'. Clearly this is subjective, and will depend on the targeted end-user or customer. User interviews, surveys, video recording of user sessions, and other techniques can be used. Programmers and testers are usually not appropriate as usability testers.
• install/uninstall testing - testing of full, partial, or upgrade install/uninstall processes.
• recovery testing - testing how well a system recovers from crashes, hardware failures, or other catastrophic problems.
• security testing - testing how well the system protects against unauthorized internal or external access, willful damage, etc; may require sophisticated testing techniques.
• compatability testing - testing how well software performs in a particular hardware/software/operating system/network/etc. environment.
• exploratory testing - often taken to mean a creative, informal software test that is not based on formal test plans or test cases; testers may be learning the software as they test it.
• ad-hoc testing - similar to exploratory testing, but often taken to mean that the testers have significant understanding of the software before testing it.
• user acceptance testing - determining if software is satisfactory to an end-user or customer.
• comparison testing - comparing software weaknesses and strengths to competing products.
• alpha testing - testing of an application when development is nearing completion; minor design changes may still be made as a result of such testing. Typically done by end-users or others, not by programmers or testers.
• beta testing - testing when development and testing are essentially completed and final bugs and problems need to be found before final release. Typically done by end-users or others, not by programmers or testers.
• mutation testing - a method for determining if a set of test data or test cases is useful, by deliberately introducing various code changes ('bugs') and retesting with the original test data/cases to determine if the 'bugs' are detected. Proper implementation requires large computational resources.
What are 5 common problems in the software development process?
• poor requirements - if requirements are unclear, incomplete, too general, or not testable, there will be problems.
• unrealistic schedule - if too much work is crammed in too little time, problems are inevitable.
• inadequate testing - no one will know whether or not the program is any good until the customer complains or systems crash.
• featuritis - requests to pile on new features after development is underway; extremely common.
• miscommunication - if developers don't know what's needed or customer's have erroneous expectations, problems are guaranteed.

What are 5 common solutions to software development problems?

• solid requirements - clear, complete, detailed, cohesive, attainable, testable requirements that are agreed to by all players. Use prototypes to help nail down requirements.
• realistic schedules - allow adequate time for planning, design, testing, bug fixing, re-testing, changes, and documentation; personnel should be able to complete the project without burning out.
• adequate testing - start testing early on, re-test after fixes or changes, plan for adequate time for testing and bug-fixing.
• stick to initial requirements as much as possible - be prepared to defend against changes and additions once development has begun, and be prepared to explain consequences. If changes are necessary, they should be adequately reflected in related schedule changes. If possible, use rapid prototyping during the design phase so that customers can see what to expect. This will provide them a higher comfort level with their requirements decisions and minimize changes later on.
• communication - require walkthroughs and inspections when appropriate; make extensive use of group communication tools - e-mail, groupware, networked bug-tracking tools and change management tools, intranet capabilities, etc.; insure that documentation is available and up-to-date - preferably electronic, not paper; promote teamwork and cooperation; use protoypes early on so that customers' expectations are clarified.

What is software 'quality'?

Quality software is reasonably bug-free, delivered on time and within budget, meets requirements and/or expectations, and is maintainable. However, quality is obviously a subjective term. It will depend on who the 'customer' is and their overall influence in the scheme of things. A wide-angle view of the 'customers' of a software development project might include end-users, customer acceptance testers, customer contract officers, customer management, the development organization's management/accountants/testers/salespeople, future software maintenance engineers, stockholders, magazine columnists, etc. Each type of 'customer' will have their own slant on 'quality' - the accounting department might define quality in terms of profits while an end-user might define quality as user-friendly and bug-free.

What is 'good code'?

'Good code' is code that works, is bug free, and is readable and maintainable. Some organizations have coding 'standards' that all developers are supposed to adhere to, but everyone has different ideas about what's best, or what is too many or too few rules. There are also various theories and metrics, such as McCabe Complexity metrics. It should be kept in mind that excessive use of standards and rules can stifle productivity and creativity. 'Peer reviews', 'buddy checks' code analysis tools, etc. can be used to check for problems and enforce standards.

For C and C++ coding, here are some typical ideas to consider in setting rules/standards; these may or may not apply to a particular situation:
• minimize or eliminate use of global variables.
• use descriptive function and method names - use both upper and lower case, avoid abbreviations, use as many characters as necessary to be adequately descriptive (use of more than 20 characters is not out of line); be consistent in naming conventions.
• use descriptive variable names - use both upper and lower case, avoid abbreviations, use as many characters as necessary to be adequately descriptive (use of more than 20 characters is not out of line); be consistent in naming conventions.
• function and method sizes should be minimized; less than 100 lines of code is good, less than 50 lines is preferable.
• function descriptions should be clearly spelled out in comments preceding a function's code.
• organize code for readability.
• use whitespace generously - vertically and horizontally
• each line of code should contain 70 characters max.
• one code statement per line.
• coding style should be consistent throught a program (eg, use of brackets, indentations, naming conventions, etc.)
• in adding comments, err on the side of too many rather than too few comments; a common rule of thumb is that there should be at least as many lines of comments (including header blocks) as lines of code.
• no matter how small, an application should include documentaion of the overall program function and flow (even a few paragraphs is better than nothing); or if possible a separate flow chart and detailed program documentation.
• make extensive use of error handling procedures and status and error logging.
• for C++, to minimize complexity and increase maintainability, avoid too many levels of inheritance in class heirarchies (relative to the size and complexity of the application). Minimize use of multiple inheritance, and minimize use of operator overloading (note that the Java programming language eliminates multiple inheritance and operator overloading.)
• for C++, keep class methods small, less than 50 lines of code per method is preferable.
• for C++, make liberal use of exception handlers

What is 'good design'?

'Design' could refer to many things, but often refers to 'functional design' or 'internal design'. Good internal design is indicated by software code whose overall structure is clear, understandable, easily modifiable, and maintainable; is robust with sufficient error-handling and status logging capability; and works correctly when implemented. Good functional design is indicated by an application whose functionality can be traced back to customer and end-user requirements. (See further discussion of functional and internal design in 'What's the big deal about requirements?' in FAQ #2.) For programs that have a user interface, it's often a good idea to assume that the end user will have little computer knowledge and may not read a user manual or even the on-line help; some common rules-of-thumb include:
• the program should act in a way that least surprises the user
• it should always be evident to the user what can be done next and how to exit
• the program shouldn't let the users do something stupid without warning them.

What is SEI? CMM? ISO? IEEE? ANSI? Will it help?

• SEI = 'Software Engineering Institute' at Carnegie-Mellon University; initiated by the U.S. Defense Department to help improve software development processes.
• CMM = 'Capability Maturity Model', developed by the SEI. It's a model of 5 levels of organizational 'maturity' that determine effectiveness in delivering quality software. It is geared to large organizations such as large U.S. Defense Department contractors. However, many of the QA processes involved are appropriate to any organization, and if reasonably applied can be helpful. Organizations can receive CMM ratings by undergoing assessments by qualified auditors.

Level 1 - characterized by chaos, periodic panics, and heroic efforts required by individuals to successfully complete projects. Few if any processes in place; successes may not be repeatable.

Level 2 - software project tracking, requirements management, realistic planning, and configuration management processes are in place; successful practices can be repeated.

Level 3 - standard software development and maintenance processes are integrated throughout an organization; a Software Engineering Process Group is is in place to oversee software processes, and training programs are used to ensure understanding and compliance.

Level 4 - metrics are used to track productivity, processes, and products. Project performance is predictable, and quality is consistently high.

Level 5 - the focus is on continouous process improvement. The impact of new processes and technologies can be predicted and effectively implemented when required.

Perspective on CMM ratings: During 1997-2001, 1018 organizations were assessed. Of those, 27% were rated at Level 1, 39% at 2, 23% at 3, 6% at 4, and 5% at 5. (For ratings during the period 1992-96, 62% were at Level 1, 23% at 2, 13% at 3, 2% at 4, and
0.4% at 5.) The median size of organizations was 100 software engineering/maintenance personnel; 32% of organizations were U.S. federal contractors or agencies. For those rated at
Level 1, the most problematical key process area was in Software Quality Assurance.

• ISO = 'International Organisation for Standardization' - The ISO 9001:2000 standard (which replaces the previous standard of 1994) concerns quality systems that are assessed by outside auditors, and it applies to many kinds of production and manufacturing organizations, not just software. It covers documentation, design, development, production, testing, installation, servicing, and other processes. The full set of standards consists of: (a)Q9001-2000 - Quality Management Systems: Requirements; (b)Q9000-2000 - Quality Management Systems: Fundamentals and Vocabulary; (c)Q9004-2000 - Quality Management Systems: Guidelines for Performance Improvements. To be ISO 9001 certified, a third-party auditor assesses an organization, and certification is typically good for about 3 years, after which a complete reassessment is required. Note that ISO certification does not necessarily indicate quality products - it indicates only that documented processes are followed. Also see http://www.iso.ch/ for the latest information. In the U.S. the standards can be purchased via the ASQ web site at http://e-standards.asq.org/

• IEEE = 'Institute of Electrical and Electronics Engineers' - among other things, creates standards such as 'IEEE Standard for Software Test Documentation' (IEEE/ANSI Standard 829), 'IEEE Standard of Software Unit Testing (IEEE/ANSI Standard 1008), 'IEEE Standard for Software Quality Assurance Plans' (IEEE/ANSI Standard 730), and others.

• ANSI = 'American National Standards Institute', the primary industrial standards body in the U.S.; publishes some software-related standards in conjunction with the IEEE and ASQ (American Society for Quality).

• Other software development process assessment methods besides CMM and ISO 9000 include SPICE, Trillium, TickIT. and Bootstrap.

What is the 'software life cycle'?

The life cycle begins when an application is first conceived and ends when it is no longer in use. It includes aspects such as initial concept, requirements analysis, functional design, internal design, documentation planning, test planning, coding, document preparation, integration, testing, maintenance, updates, retesting, phase-out, and other aspects.

Will automated testing tools make testing easier?

• Possibly. For small projects, the time needed to learn and implement them may not be worth it. For larger projects, or on-going long-term projects they can be valuable.
• A common type of automated tool is the 'record/playback' type. For example, a tester could click through all combinations of menu choices, dialog box choices, buttons, etc. in an application GUI and have them 'recorded' and the results logged by a tool. The 'recording' is typically in the form of text based on a scripting language that is interpretable by the testing tool. If new buttons are added, or some underlying code in the application is changed, etc. the application might then be retested by just 'playing back' the 'recorded' actions, and comparing the logging results to check effects of the changes. The problem with such tools is that if there are continual changes to the system being tested, the 'recordings' may have to be changed so much that it becomes very time-consuming to continuously update the scripts. Additionally, interpretation and analysis of results (screens, data, logs, etc.) can be a difficult task. Note that there are record/playback tools for text-based interfaces also, and for all types of platforms.
• Other automated tools can include:
code analyzers - monitor code complexity, adherence to standards, etc.
coverage analyzers - these tools check which parts of the code have been exercised by a test, and may be oriented to code statement coverage, condition coverage, path coverage, etc.
memory analyzers - such as bounds-checkers and leak detectors.
load/performance test tools - for testing client/server and web applications under various load
levels.
web test tools - to check that links are valid, HTML code usage is correct, client-side and server-side programs work, a web site's interactions are secure.

other tools - for test case management, documentation management, bug reporting, and configuration management. 

   WinRunner Interview Questions and Answers

How you used WinRunner in your project?

Yes, I have been using WinRunner for creating automated scripts for GUI, functional and regression testing of the AUT.
 
Explain WinRunner testing process?

WinRunner testing process involves six main stages
* Create GUI Map File so that WinRunner can recognize the GUI objects in the application being tested
* Create test scripts by recording, programming, or a combination of both. While recording tests, insert checkpoints where you want to check the response of the application being tested.

* Debug Test: run tests in Debug mode to make sure they run smoothly
* Run Tests: run tests in Verify mode to test your application.
* View Results: determines the success or failure of the tests.
* Report Defects: If a test run fails due to a defect in the application being tested, you can report information about the defect directly from the Test Results window.
 
What is contained in the GUI map?

WinRunner stores information it learns about a window or object in a GUI Map. When WinRunner runs a test, it uses the GUI map to locate objects. It reads an object’s description in the GUI map and then looks for an object with the same properties in the application being tested. Each of these objects in the GUI Map file will be having a logical name and a physical description. There are 2 types of GUI Map files. Global GUI Map file: a single GUI Map file for the entire application. GUI Map File per Test: WinRunner automatically creates a GUI Map file for each test created.
 
How does WinRunner recognize objects on the application?

WinRunner uses the GUI Map file to recognize objects on the application. When WinRunner runs a test, it uses the GUI map to locate objects. It reads an object’s description in the GUI map and then looks for an object with the same properties in the application being tested.

Have you created test scripts and what is contained in the test scripts?

Yes I have created test scripts. It contains the statement in Mercury Interactive’s Test Script Language (TSL). These statements appear as a test script in a test window. You can then enhance your recorded test script, either by typing in additional TSL functions and programming elements or by using WinRunner’s visual programming tool, the Function Generator.

How does WinRunner evaluate test results?

Following each test run, WinRunner displays the results in a report. The report details all the major events that occurred during the run, such as checkpoints, error messages, system messages, or user messages. If mismatches are detected at checkpoints during the test run, you can view the expected results and the actual results from the Test Results window.
 
Have you performed debugging of the scripts?
Yes, I have performed debugging of scripts. We can debug the script by executing the script in the debug mode. We can also debug script using the Step, Step Into, Step out functionalities provided by the WinRunner.
How do you run your test scripts?

We run tests in Verify mode to test your application. Each time WinRunner encounters a checkpoint in the test script, it compares the current data of the application being tested to the expected data captured earlier. If any mismatches are found, WinRunner captures them as actual results.
 
How do you analyze results and report the defects?

Following each test run, WinRunner displays the results in a report. The report details all the major events that occurred during the run, such as checkpoints, error messages, system messages, or user messages. If mismatches are detected at checkpoints during the test run, you can view the expected results and the actual results from the Test Results window. If a test run fails due to a defect in the application being tested, you can report information about the defect directly from the Test Results window. This information is sent via e-mail to the quality assurance manager, who tracks the defect until it is fixed.

What is the use of Test Director software?

TestDirector is Mercury Interactive’s software test management tool. It helps quality assurance personnel plan and organize the testing process. With TestDirector you can create a database of manual and automated tests, build test cycles, run tests, and report and track defects. You can also create reports and graphs to help review the progress of planning tests, running tests, and tracking defects before a software release.


Have you integrated your automated scripts from TestDirector?

When you work with WinRunner, you can choose to save your tests directly to your TestDirector database or while creating a test case in the TestDirector we can specify whether the script in automated or manual. And if it is automated script then TestDirector will build a skeleton for the script that can be later modified into one which could be used to test the AUT.


What are the different modes of recording?

There are two type of recording in WinRunner.

Context Sensitive recording records the operations you perform on your application by identifying Graphical User Interface (GUI) objects.

Analog recording records keyboard input, mouse clicks, and the precise x- and y-coordinates traveled by the mouse pointer across the screen.

What is the purpose of loading WinRunner Add-Ins?

Add-Ins are used in WinRunner to load functions specific to the particular add-in to the memory. While creating a script only those functions in the add-in selected will be listed in the function generator and while executing the script only those functions in the loaded add-in will be executed else WinRunner will give an error message saying it does not recognize the function.

What are the reasons that WinRunner fails to identify an object on the GUI?

WinRunner fails to identify an object in a GUI due to various reasons. The object is not a standard windows object. If the browser used is not compatible with the WinRunner version, GUI Map Editor will not be able to learn any of the objects displayed in the browser window.

What is meant by the logical name of the object?
An object’s logical name is determined by its class. In most cases, the logical name is the label that appears on an object.

If the object does not have a name then what will be the logical name?
If the object does not have a name then the logical name could be the attached text.

What is the different between GUI map and GUI map files?
The GUI map is actually the sum of one or more GUI map files. There are two modes for organizing GUI map files. Global GUI Map file: a single GUI Map file for the entire application. GUI Map File per Test: WinRunner automatically creates a GUI Map file for each test created.

GUI Map file is a file which contains the windows and the objects learned by the WinRunner with its logical name and their physical description.

How do you view the contents of the GUI map?
GUI Map editor displays the content of a GUI Map. We can invoke GUI Map Editor from the Tools Menu in WinRunner. The GUI Map Editor displays the various GUI Map files created and the windows and objects learned in to them with their logical name and physical description.

When you create GUI map do you record all the objects of specific objects?
If we are learning a window then WinRunner automatically learns all the objects in the window else we will we identifying those object, which are to be learned in a window, since we will be working with only those objects while creating scripts.

Quick Test Pro Interview Questions and Answers

What is QTP?
Quick Test Pro is a graphical interface record-playback automation tool. It is able to work with any web, java or windows client application. Quick Test enables you to test standard web objects and ActiveX controls. In addition to these environments, Quick Test Professional also enables you to test Java applets and applications and multimedia objects on Applications as well as standard Windows applications, Visual Basic 6 applications and.NET framework applications

What are the Features & Benefits of Quick Test Pro (QTP 8.0)?
Operates stand-alone, or integrated into Mercury Business Process Testing and Mercury Quality Center. Introduces next-generation zero-configuration Keyword Driven testing technology in Quick Test Professional 8.0 allowing for fast test creation, easier maintenance, and more powerful data-driving capability. Identifies objects with Unique Smart Object Recognition, even if they change from build to build, enabling reliable unattended script execution. Collapses test documentation and test creation to a single step with Auto-documentation technology. Enables thorough validation of applications through a full complement of checkpoints.
 
How to handle the exceptions using recovery scenario manager in QTP?
There are 4 trigger events during which a recovery scenario should be activated. A pop up window appears in an opened application during the test run: A property of an object changes its state or value, A step in the test does not run successfully, An open application fails during the test run, These triggers are considered as exceptions.You can instruct QTP to recover unexpected events or errors that occurred in your testing environment during test run. Recovery scenario manager provides a wizard that guides you through the defining recovery scenario. Recovery scenario has three steps: 1. Triggered Events 2. Recovery steps 3. Post Recovery Test-Run

What is the use of Text output value in QTP?
Output values enable to view the values that the application talks during run time. When parameterized, the values change for each iteration. Thus by creating output values, we can capture the values that the application takes for each run and output them to the data table.

How to use the Object spy in QTP 8.0 version?
There are two ways to Spy the objects in QTP: 1) Thru file toolbar, In the File Toolbar click on the last toolbar button (an icon showing a person with hat). 2) True Object repository Dialog, In Object repository dialog click on the button object spy. In the Object spy Dialog click on the button showing hand symbol. The pointer now changes in to a hand symbol and we have to point out the object to spy the state of the object if at all the object is not visible. or window is minimized then, hold the Ctrl button and activate the required window to and release the Ctrl button.
 
How Does Run time data (Parameterization) is handled in QTP?
You can then enter test data into the Data Table, an integrated spreadsheet with the full functionality of Excel, to manipulate data sets and create multiple test iterations, without programming, to expand test case coverage. Data can be typed in or imported from databases, spreadsheets, or text files.

What is keyword view and Expert view in QTP?
Quick Test’s Keyword Driven approach, test automation experts have full access to the underlying test and object properties, via an integrated scripting and debugging environment that is round-trip synchronized with the Keyword View. Advanced testers can view and edit their tests in the Expert View, which reveals the underlying industry-standard VBScript that Quick Test Professional automatically generates. Any changes made in the Expert View are automatically synchronized with the Keyword View.
 
Explain about the Test Fusion Report of QTP?
Once a tester has run a test, a Test Fusion report displays all aspects of the test run: a high-level results overview, an expandable Tree View of the test specifying exactly where application failures occurred, the test data used, application screen shots for every step that highlight any discrepancies, and detailed explanations of each checkpoint pass and failure. By combining Test Fusion reports with Quick Test Professional, you can share reports across an entire QA and development team.
 
Which environments does QTP support?
Quick Test Professional supports functional testing of all enterprise environments, including Windows, Web,..NET, Java/J2EE, SAP, Siebel, Oracle, PeopleSoft, Visual Basic, ActiveX, mainframe terminal emulators, and Web services.
 
Explain QTP Testing process?
Quick Test testing process consists of 6 main phases:
Create your test plan
Prior to automating there should be a detailed description of the test including the exact steps to follow, data to be input, and all items to be verified by the test. The verification information should include both data validations and existence or state verifications of objects in the application.
Recording a session on your application
As you navigate through your application, Quick Test graphically displays each step you perform in the form of a collapsible icon-based test tree. A step is any user action that causes or makes a change in your site, such as clicking a link or image, or entering data in a form.
Enhancing your test
Inserting checkpoints into your test lets you search for a specific value of a page, object or text string, which helps you identify whether or not your application is functioning correctly. NOTE: Checkpoints can be added to a test as you record it or after the fact via the Active Screen. It is much easier and faster to add the checkpoints during the recording process. Broadening the scope of your test by replacing fixed values with parameters lets you check how your application performs the same operations with multiple sets of data. Adding logic and conditional statements to your test enables you to add sophisticated checks to your test.
Debugging your test
If changes were made to the script, you need to debug it to check that it operates smoothly and without interruption.
Running your test on a new version of your application
You run a test to check the behavior of your application. While running, Quick Test connects to your application and performs each step in your test.
Analyzing the test results

You examine the test results to pinpoint defects in your application.
 

Reporting defects
As you encounter failures in the application when analyzing test results, you will create defect reports in Defect Reporting Tool

Explain the QTP Tool interface.
It contains the following key elements: Title bar, displaying the name of the currently open test, Menu bar, displaying menus of Quick Test commands, File toolbar, containing buttons to assist you in managing tests, Test toolbar, containing buttons used while creating and maintaining tests, Debug toolbar, containing buttons used while debugging tests. Note: The Debug toolbar is not displayed when you open Quick Test for the first time. You can display the Debug toolbar by choosing View — Toolbars — Debug. Action toolbar, containing buttons and a list of actions, enabling you to view the details of an individual action or the entire test flow. Note: The Action toolbar is not displayed when you open Quick Test for the first time. You can display the Action toolbar by choosing View — Toolbars — Action. If you insert a reusable or external action in a test, the Action toolbar is displayed automatically. Test pane, containing two tabs to view your test-the Tree View and the Expert View ,Test Details pane, containing the Active Screen. Data Table, containing two tabs, Global and Action, to assist you in parameterizing your test. Debug Viewer pane, containing three tabs to assist you in debugging your test-Watch Expressions, Variables, and Command. (The Debug Viewer pane can be opened only when a test run pauses at a breakpoint.) Status bar, displaying the status of the test

How does QTP recognize Objects in AUT?
Quick Test stores the definitions for application objects in a file called the Object Repository. As you record your test, Quick Test will add an entry for each item you interact with. Each Object Repository entry will be identified by a logical name (determined automatically by Quick Test), and will contain a set of properties (type, name, etc) that uniquely identify each object. Each line in the Quick Test script will contain a reference to the object that you interacted with, a call to the appropriate method (set, click, check) and any parameters for that method (such as the value for a call to the set method). The references to objects in the script will all be identified by the logical name, rather than any physical, descriptive properties.

What are the types of Object Repositories in QTP?
Quick Test has two types of object repositories for storing object information: shared object repositories and action object repositories. You can choose which type of object repository you want to use as the default type for new tests, and you can change the default as necessary for each new test. The object repository per-action mode is the default setting. In this mode, Quick Test automatically creates an object repository file for each action in your test so that you can create and run tests without creating, choosing, or modifying object repository files. However, if you do modify values in an action object repository, your changes do not have any effect on other actions. Therefore, if the same test object exists in more than one action and you modify an object’s property values in one action, you may need to make the same change in every action (and any test) containing the object.

Explain the check points in QTP?
A checkpoint verifies that expected information is displayed in an Application while the test is running. You can add eight types of checkpoints to your test for standard web objects using QTP. A page checkpoint checks the characteristics of an Application. A text checkpoint checks that a text string is displayed in the appropriate place on an Application. An object checkpoint (Standard) checks the values of an object on an Application. An image checkpoint checks the values of an image on an Application. A table checkpoint checks information within a table on a Application. An Accessibilityy checkpoint checks the web page for Section 508 compliance. An XML checkpoint checks the contents of individual XML data files or XML documents that are part of your Web application. A database checkpoint checks the contents of databases accessed by your web site

In how many ways we can add check points to an application using QTP?
We can add checkpoints while recording the application or we can add after recording is completed using Active screen (Note : To perform the second one The Active screen must be enabled while recording).

How does QTP identify objects in the application?
QTP identifies the object in the application by Logical Name and Class.

What is Parameterizing Tests?
When you test your application, you may want to check how it performs the same operations with multiple sets of data. For example, suppose you want to check how your application responds to ten separate sets of data. You could record ten separate tests, each with its own set of data. Alternatively, you can create a parameterized test that runs ten times: each time the test runs, it uses a different set of data.

What is test object model in QTP?
The test object model is a large set of object types or classes that Quick Test uses to represent the objects in your application. Each test object class has a list of properties that can uniquely identify objects of that class and a set of relevant methods that Quick Test can record for it. A test object is an object that Quick Test creates in the test or component to represent the actual object in your application. Quick Test stores information about the object that will help it identify and check the object during the run session.

What is Object Spy in QTP?
Using the Object Spy, you can view the properties of any object in an open application. You use the Object Spy pointer to point to an object. The Object Spy displays the selected object’s hierarchy tree and its properties and values in the Properties tab of the Object Spy dialog box.


What is the Diff between Image check-point and Bit map Check point?
Image checkpoints enable you to check the properties of a Web image. You can check an area of a Web page or application as a bitmap. While creating a test or component, you specify the area you want to check by selecting an object. You can check an entire object or any area within an object. Quick Test captures the specified object as a bitmap, and inserts a checkpoint in the test or component. You can also choose to save only the selected area of the object with your test or component in order to save disk Space. For example, suppose you have a Web site that can display a map of a city the user specifies.
The map has control keys for zooming. You can record the new map that is displayed after one click on the control key that zooms in the map. Using the bitmap checkpoint, you can check that the map zooms in correctly. You can create bitmap checkpoints for all supported testing environments (as long as the appropriate add-ins are loaded). Note: The results of bitmap checkpoints may be affected by factors such as operating system, screen resolution, and color settings.

How many ways we can parameterize data in QTP?
There are four types of parameters: Test, action or component parameters enable you to use values passed from your test or component, or values from other actions in your test. Data Table parameters enable you to create a data-driven test (or action) that runs several times using the data you supply. In each repetition, or iteration, Quick Test uses a different value from the Data Table. Environment variable parameters enable you to use variable values from other sources during the run session.
These may be values you supply, or values that Quick Test generates for you based on conditions and options you choose. Random number parameters enable you to insert random numbers as values in your test or component. For example, to check how your application handles small and large ticket orders, you can have Quick Test generate a random number and insert it in a number of tickets edit field.

How do u do batch testing in WR & is it possible to do in QTP, if so explain?
Batch Testing in WR is nothing but running the whole test set by selecting Run Test set from the Execution Grid. The same is possible with QTP also. If our test cases are automated then by selecting Run Test set all the test scripts can be executed. In this process the Scripts get executed one by one by keeping all the remaining scripts in Waiting mode.

If I give some thousand tests to execute in 2 days what do u do?
Adhoc testing is done. It Covers the least basic functionalities to verify that the system is working fine.

What does it mean when a check point is in red color? what do u do?
A red color indicates failure. Here we analyze the cause for failure whether it is a Script Issue or Environment Issue or a Application issue.

What is Object Spy in QTP?
Using the Object Spy, you can view the properties of any object in an open application. You use the Object Spy pointer to point to an object. The Object Spy displays the selected object’s hierarchy tree and its properties and values in the Properties tab of the Object Spy dialog box.

What is the file extension of the code file & object repository file in QTP?
Code file extension is.vbs and object repository is.tsr

Explain the concept of object repository & how QTP recognizes objects?
Object Repository: displays a tree of all objects in the current component or in the current action or entire test (depending on the object repository mode you selected). We can view or modify the test object description of any test object in the repository or to add new objects to the repository.

Quicktest learns the default property values and determines in which test object class it fits. If it is not enough it adds assistive properties, one by one to the description until it has compiled the unique description. If no assistive properties are available, then it adds a special Ordinal identifier such as objects location on the page or in the source code.

What are the properties you would use for identifying a browser & page when using descriptive programming?
Name would be another property apart from title that we can use.

Give me an example where you have used a COM interface in your QTP project?
com interface appears in the scenario of front end and back end. for eg:if you r using oracle as back end and front end as VB or any language then for better compatibility we will go for an interface. of which COM will be one among those interfaces.
Create object creates handle to the instance of the specified object so that we program can use the methods on the specified object. It is used for implementing Automation(as defined by Microsoft).

Explain in brief about the QTP Automation Object Model.
Essentially all configuration and run functionality provided via the Quick Test interface is in some way represented in the Quick Test automation object model via objects, methods, and properties. Although a one-on-one comparison cannot always be made, most dialog boxes in Quick Test have a corresponding automation object, most options in dialog boxes can be set and/or retrieved using the corresponding object property, and most menu commands and other operations have corresponding automation methods.

You can use the objects, methods, and properties exposed by the Quick Test automation object model, along with standard programming elements such as loops and conditional statements to design your program.


Loadrunner Interview Questions and Answers

What is load testing?
Load testing is to test that if the application works fine with the loads that result from large number of simultaneous users, transactions and to determine weather it can handle peak usage periods.

What is Performance testing?
Timing for both read and update transactions should be gathered to determine whether system functions are being performed in an acceptable timeframe. This should be done standalone and then in a multi user environment to determine the effect of multiple transactions on the timing of a single transaction.
 
Did u use LoadRunner? What version?
Yes. Version 7.2.
 
Explain the Load testing process?
Step 1: Planning the test. Here, we develop a clearly defined test plan to ensure the test scenarios we develop will accomplish load-testing objectives.
Step 2: Creating Vusers. Here, we create Vuser scripts that contain tasks performed by each Vuser, tasks performed by Vusers as a whole, and tasks measured as transactions.
Step 3: Creating the scenario. A scenario describes the events that occur during a testing session. It includes a list of machines, scripts, and Vusers that run during the scenario. We create scenarios using LoadRunner Controller. We can create manual scenarios as well as goal-oriented scenarios. In manual scenarios, we define the number of Vusers, the load generator machines, and percentage of Vusers to be assigned to each script. For web tests, we may create a goal-oriented scenario where we define the goal that our test has to achieve. LoadRunner automatically builds a scenario for us.
Step 4: Running the scenario.
We emulate load on the server by instructing multiple Vusers to perform tasks simultaneously. Before the testing, we set the scenario configuration and scheduling. We can run the entire scenario, Vuser groups, or individual Vusers.
Step 5: Monitoring the scenario.
We monitor scenario execution using the LoadRunner online runtime, transaction, system resource, Web resource, Web server resource, Web application server resource, database server resource, network delay, streaming media resource, firewall server resource, ERP server resource, and Java performance monitors.
Step 6: Analyzing test results. During scenario execution, LoadRunner records the performance of the application under different loads. We use LoadRunner’s graphs and reports to analyze the application’s performance.

When do you do load and performance Testing?
We perform load testing once we are done with interface (GUI) testing. Modern system architectures are large and complex. Whereas single user testing primarily on functionality and user interface of a system component, application testing focuses on performance and reliability of an entire system. For example, a typical application-testing scenario might depict 1000 users logging in simultaneously to a system. This gives rise to issues such as what is the response time of the system, does it crash, will it go with different software applications and platforms, can it hold so many hundreds and thousands of users, etc. This is when we set do load and performance testing.

What are the components of LoadRunner?
The components of LoadRunner are The Virtual User Generator, Controller, and the Agent process, LoadRunner Analysis and Monitoring, LoadRunner Books Online.

What Component of LoadRunner would you use to record a Script?
The Virtual User Generator (VuGen) component is used to record a script. It enables you to develop Vuser scripts for a variety of application types and communication protocols.
 
What Component of LoadRunner would you use to play Back the script in multi user mode?
The Controller component is used to playback the script in multi-user mode. This is done during a scenario run where a vuser script is executed by a number of vusers in a group.

What is a rendezvous point?
You insert rendezvous points into Vuser scripts to emulate heavy user load on the server. Rendezvous points instruct Vusers to wait during test execution for multiple Vusers to arrive at a certain point, in order that they may simultaneously perform a task. For example, to emulate peak load on the bank server, you can insert a rendezvous point instructing 100 Vusers to deposit cash into their accounts at the same time.

What is a scenario?
A scenario defines the events that occur during each testing session. For example, a scenario defines and controls the number of users to emulate, the actions to be performed, and the machines on which the virtual users run their emulations.

Explain the recording mode for web Vuser script?
We use VuGen to develop a Vuser script by recording a user performing typical business processes on a client application. VuGen creates the script by recording the activity between the client and the server. For example, in web based applications, VuGen monitors the client end of the database and traces all the requests sent to, and received from, the database server. We use VuGen to: Monitor the communication between the application and the server; Generate the required function calls; and Insert the generated function calls into a Vuser script.

Why do you create parameters?
Parameters are like script variables. They are used to vary input to the server and to emulate real users. Different sets of data are sent to the server each time the script is run. Better simulate the usage model for more accurate testing from the Controller; one script can emulate many different users on the system.

What is correlation? Explain the difference between automatic correlation and manual correlation?
Correlation is used to obtain data which are unique for each run of the script and which are generated by nested queries. Correlation provides the value to avoid errors arising out of duplicate values and also optimizing the code (to avoid nested queries). Automatic correlation is where we set some rules for correlation. It can be application server specific. Here values are replaced by data which are created by these rules. In manual correlation, the value we want to correlate is scanned and create correlation is used to correlate.

How do you find out where correlation is required? Give few examples from your projects?
Two ways: First we can scan for correlations, and see the list of values which can be correlated. From this we can pick a value to be correlated. Secondly, we can record two scripts and compare them. We can look up the difference file to see for the values which needed to be correlated. In my project, there was a unique id developed for each customer, it was nothing but Insurance Number, it was generated automatically and it was sequential and this value was unique. I had to correlate this value, in order to avoid errors while running my script. I did using scan for correlation.

Where do you set automatic correlation options?
Automatic correlation from web point of view can be set in recording options and correlation tab. Here we can enable correlation for the entire script and choose either issue online messages or offline actions, where we can define rules for that correlation. Automatic correlation for database can be done using show output window and scan for correlation and picking the correlate query tab and choose which query value we want to correlate. If we know the specific value to be correlated, we just do create correlation for the value and specify how the value to be created.

What is a function to capture dynamic values in the web Vuser script?Web_reg_save_param function saves dynamic data information to a parameter.

When do you disable log in Virtual User Generator, When do you choose standard and extended logs?
Once we debug our script and verify that it is functional, we can enable logging for errors only. When we add a script to a scenario, logging is automatically disabled. Standard Log Option: When you select
Standard log, it creates a standard log of functions and messages sent during script execution to use for debugging. Disable this option for large load testing scenarios. When you copy a script to a scenario, logging is automatically disabled Extended Log Option: Select
extended log to create an extended log, including warnings and other messages. Disable this option for large load testing scenarios. When you copy a script to a scenario, logging is automatically disabled. We can specify which additional information should be added to the extended log using the Extended log options.

How do you debug a LoadRunner script?
VuGen contains two options to help debug Vuser scripts-the Run Step by Step command and breakpoints. The Debug settings in the Options dialog box allow us to determine the extent of the trace to be performed during scenario execution. The debug information is written to the Output window. We can manually set the message class within your script using the lr_set_debug_message function. This is useful if we want to receive debug information about a small section of the script only.

How do you write user defined functions in LR? Give me few functions you wrote in your previous project?
Before we create the User Defined functions we need to create the external
library (DLL) with the function. We add this library to VuGen bin directory. Once the library is added then we assign user defined function as a parameter. The function should have the following format: __declspec (dllexport) char* <function name>(char*, char*)Examples of user defined functions are as follows:GetVersion, GetCurrentTime, GetPltform are some of the user defined functions used in my earlier project.

What are the changes you can make in run-time settings?
The Run Time Settings that we make are: a) Pacing - It has iteration count. b) Log - Under this we have Disable Logging Standard Log and c) Extended Think Time - In think time we have two options like Ignore think time and Replay think time. d) General - Under general tab we can set the vusers as process or as multithreading and whether each step as a transaction.

Where do you set Iteration for Vuser testing?
We set Iterations in the Run Time Settings of the VuGen. The navigation for this is Run time settings, Pacing tab, set number of iterations.

How do you perform functional testing under load?
Functionality under load can be tested by running several Vusers concurrently. By increasing the amount of Vusers, we can determine how much load the server can sustain.

What is Ramp up? How do you set this?
This option is used to gradually increase the amount of Vusers/load on the server. An initial value is set and a value to wait between intervals can be specified. To set Ramp Up, go to ‘Scenario Scheduling Options’
What is the advantage of running the Vuser as thread?
VuGen provides the facility to use multithreading. This enables more Vusers to be run per generator.

If the Vuser is run as a process, the same driver program is loaded into memory for each Vuser, thus taking up a large amount of memory. This limits the number of Vusers that can be run on a single generator. If the Vuser is run as a thread, only one instance of the driver program is loaded into memory for the given number of Vusers (say 100). Each thread shares the memory of the parent driver program, thus enabling more Vusers to be run per generator.

If you want to stop the execution of your script on error, how do you do that?
The lr_abort function aborts the execution of a Vuser script. It instructs the Vuser to stop executing the Actions section, execute the vuser_end section and end the execution. This function is useful when you need to manually abort a script execution as a result of a specific error condition. When you end a script using this function, the Vuser is assigned the status "Stopped". For this to take effect, we have to first uncheck the “Continue on error” option in Run-Time Settings.

What is the relation between Response Time and Throughput?
The Throughput graph shows the amount of data in bytes that the Vusers received from the server in a second. When we compare this with the transaction response time, we will notice that as throughput decreased, the response time also decreased. Similarly, the peak throughput and highest response time would occur approximately at the same time.

Explain the Configuration of your systems?
The configuration of our systems refers to that of the client machines on which we run the Vusers. The configuration of any client machine includes its hardware settings, memory, operating system, software applications, development tools, etc. This system component configuration should match with the overall system configuration that would include the network infrastructure, the web server, the database server, and any other components that go with this larger system so as to achieve the load testing objectives.
How do you identify the performance bottlenecks?

Performance Bottlenecks can be detected by using monitors. These monitors might be application server monitors, web server monitors, database server monitors and network monitors. They help in finding out the troubled area in our scenario which causes increased response time. The measurements made are usually performance response time, throughput, hits/sec, network delay graphs, etc.

If web server, database and Network are all fine where could be the problem?
The problem could be in the system itself or in the application server or in the code written for the application.

How did you find web server related issues?
Using Web resource monitors we can find the performance of web servers. Using these monitors we can analyze throughput on the web server, number of hits per second that
occurred during scenario, the number of http responses per second, the number of downloaded pages per second.

How did you find database related issues?
By running “Database” monitor and help of “Data Resource Graph” we can find database related issues. E.g. You can specify the resource you want to measure on before running the controller and than you can see database related issues

What is the difference between Overlay graph and Correlate graph?
Overlay Graph: It overlay the content of two graphs that shares a common x-axis. Left Y-axis on the merged graph show’s the current graph’s value & Right Y-axis show the value of Y-axis of the graph that was merged. Correlate Graph: Plot the Y-axis of two graphs against each other. The active graph’s Y-axis becomes X-axis of merged graph. Y-axis of the graph that was merged becomes merged graph’s Y-axis.

How did you plan the Load? What are the Criteria?
Load test is planned to decide the number of users, what kind of machines we are going to use and from where they are run. It is based on 2 important documents, Task Distribution Diagram and Transaction profile. Task Distribution Diagram gives us the information on number of users for a particular transaction and the time of the load. The peak usage and off-usage are decided from this Diagram. Transaction profile gives us the information about the transactions name and their priority levels with regard to the scenario we are deciding.

What does vuser_init action contain?
Vuser_init action contains procedures to login to a server.

What does vuser_end action contain?
Vuser_end section contains log off procedures.

What is think time? How do you change the threshold?
Think time is the time that a real user waits between actions. Example: When a user receives data from a server, the user may wait several seconds to review the data before responding. This delay is known as the think time. Changing the Threshold: Threshold level is the level below which the recorded think time will be ignored. The default value is five (5) seconds. We can change the think time threshold in the Recording options of the Vugen.

What is the difference between standard log and extended log?
The standard log sends a subset of functions and messages sent during script execution to a log. The subset depends on the Vuser type Extended log sends a detailed script execution messages to the output log. This is mainly used during debugging when we want information about: Parameter substitution. Data returned by the server. Advanced trace.


Explain the following functions: - lr_debug_message
The lr_debug_message function sends a debug message to the output log when the specified message class is set. lr_output_message - The lr_output_message function sends notifications to the Controller Output window and the Vuser log file. lr_error_message - The lr_error_message function sends an error message to the LoadRunner Output window. lrd_stmt - The lrd_stmt function associates a character string (usually a SQL statement) with a cursor. This function sets a SQL statement to be processed. lrd_fetch - The lrd_fetch function fetches the next row from the result set.

Throughput
If the throughput scales upward as time progresses and the number of Vusers increase, this indicates that the bandwidth is sufficient. If the graph were to remain relatively flat as the number of Vusers increased, it would
be reasonable to conclude that the bandwidth is constraining the volume of
data delivered.

Types of Goals in Goal-Oriented Scenario
Load Runner provides you with five different types of goals in a goal oriented scenario:
The number of concurrent Vusers
The number of hits per second
The number of transactions per second
The number of pages per minute
The transaction response time that you want your scenario

Analysis Scenario (Bottlenecks):
In Running Vuser graph correlated with the response time graph you can see that as the number of Vusers increases, the average response time of the check itinerary transaction very gradually increases. In other words, the average response time steadily increases as the load increases. At 56 Vusers, there is a sudden, sharp increase in the average response time. We say that the test broke the server. That is the mean time before failure (MTBF). The response time clearly began to degrade when there were more than 56 Vusers running simultaneously.

What is correlation? Explain the difference between automatic correlation and manual correlation?
Correlation is used to obtain data which are unique for each run of the script and which are generated by nested queries. Correlation provides the value to avoid errors arising out of duplicate values and also optimizing the code (to avoid nested queries).
Automatic correlation is where we set some rules for correlation. It can be application server specific. Here values are replaced by data which are created by these rules. In manual correlation, the value we want to correlate is scanned and create correlation is used to correlate.

Where do you set automatic correlation options?
Automatic correlation from web point of view, can be set in recording options and correlation tab. Here we can enable correlation for the entire script and choose either issue online messages or offline actions, where we can define rules for that correlation.
Automatic correlation for database, can be done using show output window and scan for correlation and picking the correlate query tab and choose which query value we want to correlate. If we know the specific value to be correlated, we just do create correlation for the value and specify how the value to be created.

What is a function to capture dynamic values in the web vuser script?
Web_reg_save_param function saves dynamic data information to a parameter.

 

chitika

Related Posts Plugin for WordPress, Blogger...

Donate

If this site is helpful to you,

Please consider a voluntary subscription to defray ongoing expenses.